Journal of Advances in Engineering Sciences and Technology, 2025, 1(1), 35-54
https://doi.org/10.71204/85h47926

Intelligent Vehicles Path Tracking Control Strategy Based on Sliding
Mode Variable Weight MPC

Yiheng Shi !, Qianggiang Yao '-*, Zhendong Zhu !, Qilin Xie!, Xingdong Sun "
'School of Mechanical Engineering, Qinghai University, Xining 810016, China
2 Anhui Agricultural University, Hefei 230036, China

* Correspondence:

Qiangqiang Yao

yaoqiang@bjtu.edu.cn

Xingdong Sun

xdsun@ahau.edu.cn

Received: 28 May 2025/ Accepted: 27 October 2025/ Published online: 30 October 2025

Abstract

Traditional model predictive control (MPC) algorithms often suffer from slow trajectory
convergence and non-smooth control increments when applied to complex driving scenarios. To
address these challenges, this paper presents a novel trajectory tracking control method for
intelligent vehicles based on sliding-mode variable-weight MPC. An adaptive variable-weight
strategy 1s introduced within the MPC framework by integrating a sliding mode control (SMC)
mechanism. This approach allows for real-time adjustment of the weight matrix in the MPC
objective function based on the lateral displacement error and yaw angle error. This improves the
controller's ability to adapt, enhances tracking precision, and ensures stability across different
driving conditions. A vehicle dynamics model is constructed with front wheel steering angle as
the control input, and the influence of different weighting coefficients on control performance is
systematically analyzed. The proposed control strategy is implemented in Simulink and validated
through co-simulation with a high-fidelity CarSim vehicle model under a double lane-change
scenario. Simulation results show that, compared to conventional MPC, the proposed method
reduces peak lateral displacement error by up to 71% and achieves notable improvements in yaw
angle and lateral deviation of the vehicle’s center of mass. These results demonstrate the
effectiveness of the proposed approach in improving trajectory tracking performance, vehicle
stability, and dynamic responsiveness.

Keywords: Model Predictive Control; Variable Weights; Sliding Mode Control; Trajectory
Tracking

1. Introduction

Intelligent driving technology (Yu, 2016), as a frontier field of the deep integration of artificial
intelligence and the automotive industry, is leading the strategic transformation of the global
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automotive industry. With the development of high-end equipment such as intelligent
manufacturing, automatic driving and intelligent robots (Li et al., 2024), higher requirements have
been put forward for the precision, robustness and real-time performance of the motion control
system. Trajectory tracking control, as the core enabling technology of intelligent driving system,
directly determines the accuracy and reliability of vehicle motion control. Therefore, to achieve
high-precision and high-robustness trajectory tracking control, the optimal design of control
strategy becomes a key research direction.

The existing trajectory tracking control algorithms are mainly: there are PID control (Nuhel et
al., 2023) LQR control (Peicheng et al., 2022), fuzzy control (Pareek et al., 2023), model
predictive control (MPC) and so on (Wu et al., 2020). Model predictive control can realize multi-
variable and multi-constraint rolling optimization, and it is robust to the disturbance of uncertain
parameters (Tian et al., 2022), so it becomes a research hot spot in trajectory tracking control. In
recent years, some scholars have improved the MPC trajectory tracking performance by
combining two algorithms. Shi (2022) proposed a vehicle path tracking control method that
combines an enhanced model predictive control (MPC) approach with PID theory (Shi et al.,
2022). The lateral control incorporates a front wheel lateral deflection constraint and introduces a
relaxation factor to maintain driving stability. Additionally, a PID controller is used for
longitudinal control to adjust driving speeds according to varying road conditions (Yang et al.,
2017). proposed a control strategy that balances vehicle speed response and trajectory tracking
performance consisting of a trajectory planning module based on model predictive control and a
dynamics control module based on direct adaptive fuzzy control. However, the multi-algorithm
has certain requirements on the performance of the controller. An improved model predictive
control method based on particle swarm optimization is developed, which can significantly reduce
the total computational burden due to the seamless connection and mutual reinforcement between
the two layers of optimization (Zuo et al., 2020). Alcala (2019) based on cascade control, where
the external loop solves the position control using the newly designed TS-MPC method, and the
internal loop uses the TS-LMI-LQR algorithm designed through linear matrix inequalities to
dynamically control the vehicle through secondary regulation, thus significantly reducing the
computational time.

There are also scholars who, starting from the constraint. A robust model predictive control
algorithm for the wheeled mobile robot tracking problem was proposed by Dai (2020) The robust
tracking model predictive controller designed by considering the robot subjected to bounded
disturbances and various practical constraints with the introduction of incremental input
constraints. An adaptive learming model predictive control scheme was proposed by Zhang et al
(2021), Wu et al (2020) employed model predictive control to develop a trajectory tracking
controller, utilizing active steering and drive/brake, while accounting for actuator limitations and
vehicle dynamic stability constraints.. In addition considering curvature is also a major hotspot.
Tang et al (2020) proposed a controller design considering road curvature perturbation,
uncertainty modeling error, and angle compensation based on the analysis of vehicle sideslip.
However, all the above methods are controllers designed by considering specific factors under
specific working conditions, which cannot meet the needs of multi-scenarios, so some scholars
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turned to adaptive control. Liu et al (2023) introduced a two-layer model predictive control
algorithm with curvature adaptation applied to path tracking for high-speed automated driving
when encountering the problem of large trajectory curvature. Oh et al (2022) proposed an
adaptive weighted prediction method based on a sliding mode observer and a gray predictive
model weighting function for the problem of external disturbances affecting the performance of
MPC controllers. Bujarbaruah et al (2020) proposed an adaptive MPC framework for uncertain
linear systems. Yang et al (2017) proposed a control strategy that balances vehicle speed response
and trajectory tracking performance consisting of a trajectory planning module based on model
predictive control and a dynamics control module based on direct adaptive fuzzy control.

Variable weighting has become a hot research topic in recent years. M. Amir et al. applied two
vehicle models with different complexity levels to MPC control, and switched the low-precision
model to improve the computational efficiency under complex conditions, but the method also
faced the problem of loss of precision and accuracy. Zhang et al (2019) improved MPC by
adopting Laguerre function exponential weighting (LEMPC) design. A large number of
optimization parameters in the long field of view are reduced by introducing the composition
function of the fitted orthogonal sequence, thus significantly reducing the complexity without
sacrificing the tracking accuracy (Tian et al., 2022), and a decreasing characteristic is also
introduced to solve the problem of improving the robustness of the path controller (Tian et al.,
2022). Some scholars have improved the computation rate by changing the sampling frequency
(Xue et al., 2020) predicting the time domain (Funke et al., 2016), or parallel computation (Bai et
al., 2019), but this method makes the control volume change roughly, and the accuracy and
reliability of the control inputs are difficult to guarantee (Amer et al., 2017). Wang et al (2021)
used the Mamdani fuzzy algorithm to regulate the transverse displacement objective weights of
the MPC, which improves the controller's robustness to paths with different curvatures.
robustness of the controller to paths with different curvatures. However, this method cannot meet
the demand of MPC for fast response of the controller.

This paper introduces sliding mode control to achieve variable weight adaptive MPC control
based on the lateral displacement error and yaw error of the vehicle's driving path. Using sliding
mode control with fast dynamic response as an adaptive controller, coordinate the weight matrix
of the changing objective function, and establish a two-degree-of-freedom vehicle dynamics
model, sliding mode control is introduced on the basis of the MPC controller. By coordinating the
weighting coefficients Qr, O, and Rus, which act on the lateral displacement, target yaw, and
control increment, respectively, the accuracy and stability of trajectory tracking are improved in a
coordinated manner, and the adaptability of trajectory tracking is enhanced.

2. Vehicle Dynamics Model

An accurate vehicle dynamics model is fundamental to the effectiveness of MPC. This study
focuses on the trajectory tracking problem without delving into the detailled modeling of
suspension characteristics. To enable the vehicle to follow the desired trajectory with greater
accuracy and stability, the vehicle dynamics model is formulated based on Newton’s second law.
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Specifically, the longitudinal dynamics along the x-axis, lateral dynamics along the y-axis, and
yaw dynamics about the z-axis of the vehicle’s center of mass are established.

[ R S

Figure 1. Schematic diagram of a vehicle planar motion model

Longitudinal dynamics of vehicle motion along the x-axis:

LE =m(i-yp)=2F,+2F, (1)
Transverse dynamics of vehicle motion along the y-axis:

LF, =m(y+x9)=2F, +2F, (2)

Equations for the dynamics of the transverse pendulum of a vehicle rotating in the z-axis
direction:

Y M_=1j=2aF, -2bF, (3)

Where, m is the mass of the vehicle: x is the longitudinal displacement of the vehicle and y is the
lateral displacement of the vehicle; ¢ is the vehicle swing angle; I is the moment of inertia of the
vehicle rotating around the z-axis; a represents the distance from the vehicle's center of mass to
the front axle, while b denotes the distance to the rear axle. Firand F\, are the longitudinal forces
acting on the front and rear wheels along the x-axis, respectively, and F)y and F), are the lateral
forces on the front and rear wheels along the y-axis, respectively.

During the normal driving of the vehicle, the tire force is approximately described as a linear
function and has a high fitting accuracy when the lateral acceleration is not greater than 0.4g.
Therefore, the longitudinal force and the lateral deflection force of the tire are expressed by a
linear relationship with the expression:

38



Journal of Advances in Engineering Sciences and Technology, 2025, 1(1), 35-54
https://doi.org/10.71204/85h4)926

F.=C,s
f yof
4)
{F;U‘ :C.'rSr (
y+ap
Fy=-Cy(d, - P )
(5)

R, =,
X
Where, Cyrand C)- are the longitudinal stiffness of the front and rear wheels, C.rand C,, are the
lateral deflection stiffness of the front and rear wheels, sy and s, are the longitudinal slip rates of
the front and rear wheels; and dr is the front wheel turning angle of the vehicle.

The transformation equation between the vehicle body coordinate system and the inertial
coordinate system is:

{Yz;’csin¢0+j;cosq) )

X =%cosp—ysing

From the above equations, based on the small angle assumption of the front wheels, the vehicle
dynamics model can be simplified as follows.

¥ = J-’q.)Jrl[C]fo +C (6, — y+aqj)5r +Clrsr]
m X

. ) v+ ag bp— 3
y:_xq)_'_ (Cct‘(éf—y . ¢)+Ccf( q). y)]
m X X

§= i(accf(ci —M)—bccr(ﬂﬂ 7
1. b X

i=
X =xcosgp—ysing
Y = xsing + ycosp

Then the state space equation of the system can be expressed as:

{é(r) = F(E(t) u(0)) %

n==CE(1)

Where the state vector is, the control input is & =(x, y,y7,17, X,Y)" the front wheel angle U=0 , |
and the system output is?7 = (¥,Y) .

3. Model Predictive Control
3.1. Linearization and Discretization of the Model

The linearized model is obtained by using Taylor series expansion for the nonlinear model and
neglecting the higher order terms to approximate the linearized model as follows:
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Write the first equation in incremental form:
: oz z Of : of .
=¢- =~ le=¢ + s
$Tes % l:;;;; ¢ u l:.;:;, ! (10)

Using the forward Eulerian method, the discrete state space expression is obtained using the
first order difference quotient instead of differentiation as:

E(k+1)= A(K)E (k) + B(k)i(k) (11)

Where, A(k)=I+TA(t), B(k)=TB(t); I is the unit matrix; 7 is the sampling period of the model
predictive controller; and £ is the discrete step size.

(ko)
k)=
x(klr) [u(k—l|f)] (12)
Then the state space expression of the system is
{x(k+1|t)=}1'(k)x(k|t)+§(k)Au(k [t) (13)
p(k|1)=C(k)x(k|1)

A(k) B(k)

A(k) =
Where, A(k) (0 ]

. = B(k)) .
] is the state equation; B(k)=( ] j is the control equation;

andC(k)=C is the output equation.

3.2. Constructing Prediction Equations

y(k +1|k)= CAx(k| k)+ CBAu(k)
y(k+2|k)=CA x(k|k)+CABAu(k)+C BAu(k +1)
y(k+3|k)=CA x(k|k)+CA BAu(k)+CABAu(k +1)+ CBAuk +2) (14)

Y(k+N, |k)=CA "x(k|k)+CA"" BAu(k)+--+CA " BAu(k+N, 1)
Written in the form of a matrix:

Y (1) = ¥(t)x(t) + O(t) AU (t) (15)
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y(k+11k) C(k)A(k)
y(k+2|k) C(k)A(k)*
Where: YO s, 10 Y97 cwyduy |
wk+N,|k) é(k);&(k)x’
C(k)B(k) 0 0 0
C(k)A(k)B(k) C(k)B(k) 0 0
O(k) =

C(k)A(k) " B(k)  C(k)A(k)""'B(k) C(k)A(k)B(k)

C(k)A(k)"""' B(k) C(k)A(k)"*B(k) C(k)A(k)" ™ "'B(k)

3.3. Objective Function

The core of trajectory tracking control is to optimize an objective function to make the system
run along a given trajectory as much as possible while satisfying a set of constraints. The
objective function reflects the controller's desire to minimize the “cost” of tracking a given
trajectory, and the objective function in this paper is designed as shown in equation (16).

Np N, -1
J=2y(t+ilr) =y (1+i p);+ X Aule+i )i+ pe (16)

The first part of the objective function reflects the trajectory tracking capability with the goal of
minimizing the error between the predicted output and the reference output, i.e., the accuracy of
trajectory tracking; the second part reflects the vehicle stabilization capability with the goal of
minimizing the change of the front wheel angle of the control quantity, i.e., the stability of the
trajectory tracking control increment, and the third part reflects the relaxation factor introduced to
prevent the objective function from being unsolvable. O is the system within the prediction time
domain Np input weights, where Qy is the lateral displacement tracking target weights and Q, is
the desired traverse tracking target weights; R is the control output weights within the prediction
time domain Np.

(Qrp 0) 0 0 0
0 Q)

0 [Q‘P OJ 0 0

0 Q}' 2

o=| : | ’ ’ (17

0 0 (Q'ﬂ 0} 0

0 Q).
0 0 0 [Q{,, OJ
0 0,
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[R], 0 0
0 [Ry] =0

R= : : : (18)
0 0 - [Ry] .

Quadratic programming has the advantages of being structured, efficient in solving, and robust
in dealing with MPC problems, so quadratic programming is used to solve the trajectory tracking
control problem in MPC. In addition, in order to make the controller both safe and feasible in real
systems, therefore constraint design is introduced in the model predictive control.

N mm{l(AU(r)) "H’(AU(I))+G,(AU (r))} (19)
AU(1) AU()| 2 £ & F
Where, AU(t) = Yx(t|1)- Y, (¢):G, = (2E()'Q0®, 0):H, =2((®’ Q(S, *R) OJ-
Yo,

s.tAU . < AU, < U,
UminAUt + Ut Umax
Yscmin - EYsc(t) Yscmax +e&

(20)

1 0 0
11 -0

Where, 4=| . . . . ;Yre[(t):(yref(tl|t)"‘yrsl'(t:’\"r,|t))
Lo,

Solving the above equation at each control cycle yields a sequence of control increments.
;
AU, = (Au,,AuH],...,AuHNH) 21

Use the first element of this sequence to get the optimal sequence for the current moment in

time.
u(t)y=u(t—1)+ Au, (22)

The front wheel angle obtained from the above optimization solution is input to the vehicle as
the desired front wheel angle, and the next control cycle continues to repeat the above process,
which can realize the trajectory tracking of the vehicle
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4. Controller Design
4.1. Effect of Different Weight Coefficients on Performance

In order to balance the accuracy of trajectory tracking and system stability, and to enhance the
adaptability to different working conditions, a sliding mode control algorithm is introduced into
the designed MPC controller, so as to realize the adaptive variable weight control strategy. The
weighting coefficients affecting the trajectory tracking performance are Qv, Qp, and Rus, which
affect the lateral displacement, target traverse, and control increment of vehicle trajectory tracking,

respectively.

In vehicle trajectory tracking control, the weight coefficient Qy regulates the lateral deviation
between the current position of the vehicle and the reference trajectory. The effect of weight
coefficient Qy on trajectory tracking performance is shown in Figure 2. In the figure, the
weighting coefficient O, is taken as 500 and the weighting coefficient R.s 1s taken as 10000. it can
be seen from the two figures that the weighting coefficient Qy has a significant effect on the

vehicle trajectory tracking performance.
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Figure 2. Oy Impact on trajectory tracking performance

In the trajectory tracking plots, Oy is taken as 200, 2000 and 20000, respectively. among them,
0y=2000 tracks closest to the target trajectory, and especially performs the best at key locations
such as turns; while Qy=200 maintains better tracking despite a slight deviation; and Oy=20000
shows significant deviation, especially at the turns where the deviation is the largest. The lateral
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error map shows that the 0y=2000 has the smallest lateral error fluctuation and converges quickly,
with good system stability; the Qy=200 is also stable but with a slightly larger error; and the
Qr=20000 shows stronger oscillation, with the largest error fluctuation and unstable control. In
summary, Qy=2000 achieves the best balance between tracking accuracy, control smoothness and
system stability, and has the best overall performance, but only changing Oy cannot meet the
demand for trajectory tracking accuracy, so it needs to be changed in coordination with other

parameters.

In the vehicle trajectory tracking control, the weight coefficient O, 1s used to regulate the
tracking accuracy of the vehicle target traverse angular velocity. The effect of the weight
coefficient O, on the trajectory tracking performance is shown in Figure 3. In the figure, the
weighting coefficient Qy 1s taken as 1000 and the weighting coefficient Rss is taken as
50000.From the two figures, it can be seen that the weighting coefficient O, has a significant
effect on the dynamic response and the stability of the traverse angle of the vehicle trajectory

tracking.
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Q=200
———=Q =500
r
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Figure 3. 0, Impact on trajectory tracking performance

From the Figure 3, it can be seen that the traverse angle error weight Q, has a significant effect
on the trajectory tracking performance. In the transverse position plot, as O, 1s increased from 100
to 1000, the tracking accuracy of the vehicle at the turn is significantly improved, especially when
the trajectory almost completely fits the target path at Q,=1000. In the transverse swing angle
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diagram, the fluctuation is larger when O, = 100; the control effect is improved when O, = 500;
and the contrasting O, = 1000 curve shows higher attitude stability and smaller fluctuation.

Comprehensive analysis shows that appropriately increasing Q, can effectively improve the
turning accuracy, while reasonably setting Oy can help stabilize the pendulum angle control, and
the trade-off between the two can achieve better trajectory tracking performance.

In vehicle trajectory tracking control, the weighting coefficient R4s is used to regulate the
magnitude of change in the steering control increments, which affects the smoothness of the
control inputs. The effect of the weighting coefficient R4s on the trajectory tracking performance
is shown in Figure4 . In the figure, the weight coefficient Qy is taken as 1000 and the weight
coefficient O, is taken as 500.From the figure, it can be seen that the weight coefficient R4s has a
significant effect on the smoothness and response speed of the control system.
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Figure 4. R ;Impact on trajectory tracking performance

From the Figure 4, it can be seen that the control incremental weight R,; has a significant effect
on the trajectory tracking performance and control smoothness. With the increase of Rus, the
change amplitude of the front wheel corner of the vehicle gradually decreases, and the control
tends to be smooth, but the trajectory tracking accuracy decreases subsequently. When R4; = 1000,
the vehicle trajectory is closest to the target path, and the corner response is sensitive but
fluctuates greatly; when R4=10000, the control smoothness is improved, and the tracking
accuracy is slightly reduced; and when R,; is increased to 100000, the control action is the
smoothest, and the change of the front wheel angle is the smallest, but the cornering section is
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obviously deviated from the target trajectory. It can be seen that a smaller R4 is more conducive
to improving the trajectory tracking accuracy, while a larger R4s helps to improve the control
smoothness, which should be set according to the actual needs of the system for trade-off.

4.2. Sliding Mode Surface Design and Dynamic Weight Adjustment Strategy

Combined with the above analysis, choosing different weighting parameters control system has
different effects on the error of trajectory tracking. Therefore, the effects of the three key
weighting coefficients are considered comprehensively in the design of the sliding mode variable
weight MPC controller.

(1) Sliding mold surface design

Transverse error slide mold surface design

Sy :eY+A’)’]-[:JeY (T)dT+ Ay 58y (23)

Where, ¢, is the transverse error, the integral term [{e, (t)d7 is for eliminating the steady state
error and solving the static difference of the system; the differential term €, 1s for suppressing the

overshoot and enhancing the dynamic response of the system; and, 4,, and 4, are the coefficients.

Transverse Pendulum Angle Error Sliding Mode Surface Design
Sp =€t ’;“vvéw (24)

Where, €,is the pendulum angle error; 4,usually taken as 2.
(2) Dynamic weighting function

The lateral displacement weight Oy adjustment strategy with the following adjustment function:

O, =0y, -(1 +a, -sat (MH (25)
Oy

Where lateral displacement basis weights Oy, =500 ; regulation gain «, =1.6 ; saturation

threshold oy =0.15 | which corresponds to the tolerance of the lateral error; and normalization

function.

The realization mechanism is that, | s, [< 0,0, =0, . the controller maintains the normal

tracking state, and |, [> &, , the controller starts to strengthen the lateral control.

The transverse pendulum angle weights O, adjustment strategy with the following adjustment
function

0,=0,0-exp(B,15,1) (26)

Where the transverse pendulum angle basis weights ©,, = 1000 ; the parameter 8, = 0.6
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The realization mechanism is, when |s,[<0.1 is small error, smooth adjustment. Fast

response when large CITOor.

Controls incremental weight adjustments with the following adjustment function

RAJ = Rﬂ

A 27
Where, Ry = 10000 and y = 0.8.

The regulation mechanism is to use a low sliding modulus for normal tracking, thus limiting
control jitter, and a high sliding modulus for emergency corrective action, thus permitting greater
steering rates.

4.3. Sliding Mode Variable Weight MPC Controller

When both the lateral displacement and swing angle errors are small, the vehicle traveling
stability is strong, so Oy can be increased, and Q,, R4s can be decreased to enhance the accuracy
of trajectory tracking, when the lateral displacement and swing angle errors are large, the vehicle
traveling stability is weak, so Oy can be decreased, and Q,. R4scan be increased to enhance the
tracking capability of the desired swing angle. Accurate tracking of the trajectory is achieved
through Figure 5.

Shding mode variable weight
MPC trajectory tracking controller

Reference track
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|
I
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|
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o (1s, 1]
Q*Q‘.-|1—ﬂ's".7“! i R,

» —
0, =Q,s-exp(B,-5, I) Lty

Figure 5. Carsim/Simulink sliding mode variable weight MPC trajectory tracking flowchart

5. Simulation Analysis

To validate the effectiveness of the aforementioned controller, trajectory tracking control was
tested using Carsim/Simulink co-simulation. This approach was compared with the traditional
MPC control described in References (Yang et al., 2024) to examine the impact of variable

47



Journal of Advances in Engineering Sciences and Technology, 2025, 1(1), 35-54
https://doi.org/10.71204/85h4)926 Csc

e g e

weights on MPC trajectory tracking performance. The double-shift line condition is selected for
simulation, and the vehicle speed is set as variable speed, that is, to realize the simulation of two-
lane overtaking. The vehicle model parameters are shown in the following Table 1.The reference
trajectory is shown in Figure 6.

Table 1. Main parameters of the car

parameters value clarification
m/kg 1650 Vehicle quality
lgm 1.400 Distance from front axle to the center of mass
l/m 1.650 Distance from front axle to the center of mass
I./(kg'm?) 3234 Vehicle yaw inertia
hee/m 0.53 Center of gravity
D¢m 1.58 Front axle width
Di/m 1.58 Rear axle width
L Tarsspuih
87
24
14
o
0 0 40 6 80 100 120 140 160 180 200

X[m]
Figure 6. Target path

The transverse displacement map and the transverse displacement error map are shown in the
following Figure 7 and Figure 8. From the transverse displacement map, both trajectories are very
close to the target trajectory, which indicates that both controllers are able to fulfill the trajectory
tracking task better. However, it can be clearly seen in the zoomed-in graph that the ordinary
MPC (blue line) shows more obvious trajectory deviation in the region of large curvature change;
while the variable weight MPC (red line) is closer to the target trajectory and shows stronger
tracking ability in the curved segment. From the lateral displacement error diagram, it can be seen
that the MPC controller shows large error fluctuations in several segments, especially in the
position with obvious curvature changes (e.g., about X = 140), where the maximum error is close
to £0.3 m. The error fluctuations of the variable-weight MPC are obviously reduced, and the
overall curve is smoother and with smaller error, showing stronger control accuracy and stability.

48




Journal of Advances in Engineering Sciences and Technology, 2025, 1(1), 35-54 -
https://doi.org/10.71204/85h4;926 CscroLax

It shows that the improved control strategy can effectively suppress the lateral deviation and
improve the robustness and tracking performance of the system.
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Figure 7. Trajectory tracking lateral displacement
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Figure 8. Trajectory tracking lateral error

Table 2. Peak Transverse Displacement Error

. . P int 1 1
Peak point longitudinal Peak point lateral position eak point fatcra Optimization effect
iy position Y/m (SMC- o
position X/m Y/m (MPC) MPC) (%)
X=82.63 -0.24 -0.07 71
X=142.64 0.23 0.17 26

The trajectory tracking traverse angle is shown in Figure 9, from the overall point of view, the
three curves are basically consistent in the overall trend, indicating that both the traditional MPC
and the variable weight MPC can track the target traverse angle better. However, from the left
local zoomed-in figure, it can be clearly seen that the traditional MPC controller has obvious
hysteresis and has a large overshoot near the target angle, while the variable weight MPC
responds faster, with smaller overshoot, and enters the stabilization zone earlier, which shows
better control accuracy and dynamic response capability. As can be seen from the local zoomed-in
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figure on the left side, the lowest point of the cross-swing angle of the normal MPC (i.e., the most
drastic point of the cornering angle) deviates from the target curve and recovers slowly, while the
variable-weighted MPC is closer to the target at the extreme point, with smaller fluctuations, and
can return to the vicinity of the desired value faster, which embodies a stronger stability and
robustness.
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Figure 9. Trajectory tracking traverse angle

The trajectory tracking center-of-mass side deflection angle is shown in Figure 10, in which the
side deflection angle fluctuates positively and negatively for many times in different road sections,
reflecting the dynamic response of the vehicle in the process of turning and righting; the variable-
weight MPC has the same trend of the trajectory tracking center-of-mass side deflection angle as
that of the MPC controller, but there are many subtle differences, especially in the extreme value
and the transition section. In the 40-60 m, 80-100 m and 110-130 m intervals, the peak value
(maximum lateral deviation angle) of the normal MPC curve is significantly higher than that of
the variable-weight MPC, which implies that the normal MPC has a larger lateral deviation angle
and a more serious vehicle attitude deviation in large curvature turns, while the peak value of the
red line is lower, The lower peak value and faster recovery of the red line indicate that the
variable weight MPC can effectively suppress the drastic sideslip tendency and improve the
attitude stability.
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Figure 10. Trajectory tracking center-of-mass lateral declination
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Based on controller processing time comparisons, this paper demonstrates that the adaptive
sliding-mode variable-weight controller averages 16ms per operation but can reach up to 23ms
during peak loads. This represents a 1.3-fold increase in computation time compared to
conventional MPC controllers, indicating insufficient processor computational capacity under
such conditions. Consequently, real-time performance can be enhanced by optimizing algorithmic
structures or upgrading processor capabilities.

6. Conclusion

In this paper, a sliding mode variable weight MPC trajectory tracking control algorithm is
proposed, and a joint simulation platform of Carsim and Simulink is constructed to verify the
effectiveness of the variable weight MPC algorithm in trajectory tracking control. Compared with
the traditional MPC control algorithm, the proposed control strategy shows good dynamic
performance and robustness in terms of improving trajectory tracking accuracy, pendulum
angular response, and the center-of-mass lateral deflection angle control. Robustness.

(1) The control system realizes good accuracy control in lateral displacement tracking, The
transverse displacement error fluctuation is small, and the error peak value is significantly lower
than that of the traditional method, which indicates that the system has strong anti-interference
ability and accurate path fitting ability.

(2) As for the control of transverse swing angle and center of mass lateral deviation angle, the
proposed algorithm maintains the stability and rapidity of the angular response, effectively
suppresses the attitude deviation of the vehicle during dynamic lane changing or turning, and
helps to improve the overall lateral stability of the vehicle.

(3) From the comparison of peak errors, the performance of the proposed algorithm improves
significantly in several key indexes. Compared with the traditional control strategy, the maximum
value of lateral displacement error is reduced by 71%, which verifies the adaptability and
superiority of this control algorithm under high-speed and high-dynamic working conditions.
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